Epicondylar plate fixation of humeral condylar fractures in immature French bulldogs: 45 cases (2014-2020)

E. Kvale1,*,‡, I. Kalmukov*, L. Grassato*, S. Kalff† and M. Solano*

*Fitzpatrick Referrals, Godalming, UK
†Pacific and Santa Cruz Veterinary Specialists, Santa Cruz, CA, USA
‡Fredrikstad Dyrehospital, Wilbergjorde 2, 1605 Fredrikstad, Norway

Corresponding author email: eirik@f-d.no

OBJECTIVES: The objective of this study was to report outcome and postoperative complications following stabilisation of humeral condylar fractures in skeletally immature French bulldogs with a transcondylar screw combined with locking or hybrid locking plates.

MATERIALS AND METHODS: Medical records from one referral hospital were reviewed to identify skeletally immature French bulldogs with humeral condylar fractures treated with a transcondylar screw and epicondylar locking or hybrid locking plates crossing the distal humeral physis.

RESULTS: Forty-five fractures in 41 different dogs with a mean age of 4 months (range 3.5 to 5) were identified. Six cases had complications: two (4.4%) minor and four (8.9%) major. Short-term clinical outcome was excellent in 35 (77.8%), good in nine (20%) and poor in one (2.2%) case. Forty-one of 45 fractures reached radiographic union without further surgical intervention; the remaining four cases reached union following revision surgery. Long-term owner assessed outcome by telephone interview was graded as excellent in all available cases (26 of 41 dogs).

CLINICAL SIGNIFICANCE: This study suggests that the stabilisation of humeral condylar fractures in skeletally immature French bulldogs with combinations of a transcondylar screw and epicondylar locking or hybrid locking plates crossing the distal humeral physis was safe and led comparable outcomes and complication rates to previous reports.

INTRODUCTION

Humeral condylar fractures in dogs account for 41% of fractures of the humerus and are classified as lateral, medial or bicondylar (T-Y or intracondylar) (Bardet et al. 1983, Denny 1983). Lateral condylar fractures are the most common, accounting for 56 to 67% of reported cases, followed by bicondylar (26 to 35%) and medial (6.7 to 11%) (Bardet et al. 1983, Denny 1983, Ravvik 1993, Sanchez Villamil et al. 2020). The aetiopathogeneses of these fractures include trauma and humeral intracondylar fissure (HIF)/incomplete ossification of the humeral condyle (IOHC) (Marcellin-Little et al. 1994, Perry et al. 2015, Moores & Moores 2017, Smith et al. 2020). The French bulldog has been reported as a breed at risk of HIF/IOHC and is reportedly over-represented among dogs less than 12 months of age presenting with humeral condylar fractures (Smith et al. 2020, Franklin et al. 2021).

In adult dogs, rigid fixation of the condyle to the diaphysis with bone plate(s) is preferred in both unicondylar and bicondylar fractures (Perry et al. 2015, García et al. 2020, Sanchez Villamil et al. 2020). This has historically been advocated against in skeletally immature animals due to the risk of premature/asymmetrical physeal closure, and epicondylar pin fixation has been recommended to preserve the physis (Prieur 1989, Cook et al. 1999, Morgan et al. 2008, Cinti et al. 2017). The clinical significance of premature closure of the distal humeral physis is unclear, and a previous study found no evidence of reduced growth or humeral...
deformity in immature dogs treated for lateral humeral condylar fractures with a transcondylar screw crossing the distal humeral physeis (Lefebvre et al. 2008).

The objective of this study was to report outcome and postoperative complications following stabilisation of humeral condylar fractures in skeletally immature French bulldogs with a transcondylar screw combined with locking or hybrid locking plates (plates with combinations of locking and non-locking screws). Our hypothesis was that locking or hybrid locking plate fixation, with implants crossing the distal humeral physeis, for management of humeral condylar fractures in skeletally immature French bulldogs is safe and results in good clinical outcomes and low postoperative complication rates.

MATERIALS AND METHODS

Inclusion criteria

Medical records from a single referral veterinary hospital were reviewed to identify skeletally immature French bulldogs undergoing open reduction and internal fixation (ORIF) of humeral condylar fractures. Skeletal immaturity was defined as the presence of an open distal humeral physeis on preoperative radiographs. Only fractures treated with a transcondylar screw in combination with one or several locking bone plates, placed as locking or hybrid constructs with at least one screw engaging the distal epiphysis, were included in the study. Surgical technique, implant type and size and mode of transcondylar screw application were dependent on surgeon preference.

Medical record search and data extracted

Retrieved data from medical records included age, gender, weight, fracture configuration, size of plate and screws. Administration of postoperative antibiotics (type and duration), surgeon experience (European College of Veterinary Surgeons (ECVS)/Royal College of Veterinary Surgeons (RCVS) diplomat versus resident) and transcondylar screw mode (lag or positional under compression), diameter and material (surgical 316L stainless steel versus titanium) were also recorded. The narrowest diameter of the humeral condyle (isthmus) between the joint surface and the supratrochlear foramen, the use of washers, construct type, number of screws in each fracture segment and radiographic evidence of a contralateral HIF at the time of fracture was recorded from preoperative and postoperative radiographs. Postoperative radiographs were also assessed for fracture reduction, and any intracondylar gaps/steps were recorded and measured.

Complications were defined as any undesirable outcome associated with the surgical procedure and classified as minor (no surgical intervention) or major (surgical intervention) as previously described (Perry et al. 2015). A surgical site infection was defined as superficial or deep as previously described (Turk et al. 2015). Details of the complications and treatments performed were recorded.

Short-term outcome was determined based on physical examination at the time of routine radiographic follow-up scheduled 4 to 6 weeks postoperatively and graded as excellent, good, fair or poor as previously described (Table 1) (Fox et al. 1995). Bone healing of the humeral condyle and supracondylar crest was assessed on orthogonal radiographs using a previously described classification system and defined as complete (groups 1 and 2) or incomplete (groups 3 to 5) (Hammer et al. 1985). Integrity of the construct, evidence of physcal closure and subjective evidence of condylar deformity were also noted.

Long-term follow-up

All identified cases were contacted for long-term follow-up by telephone at a minimum of 12 months postoperatively. The owners were asked to assess the dogs’ function [catastrophic, poor, fair, good or excellent (Table 2)] based on the degree of lameness, perceived pain and ability to exercise, and invited for a long-term follow-up appointment. This included goniometric measurement of elbow range of motion, subjective gait assessment by a visual analogue scale (VAS) converted to a numeric score from 0 to 10, objective gait assessment using a pressure-sensing walkway (PSW) (StridewayTM; Tekscan Inc, South Boston, MA, USA) and completion of the Liverpool Osteoarthritis in Dogs (LOAD) questionnaire.

Surgery

All cases were premedicated with methadone hydrochloride (0.2 to 0.3 mg/kg Comfortan; Dechra, Shrewsbury, Shropshire, UK) alone or in combination with acepromazine maleate (0.01 to 0.02 mg/kg ACP; Elanco, Basingstoke, Hampshire, UK). General anaesthesia was induced with propofol (2 to 4 mg/kg Propofol; Zoetis, Leatherhead, UK) and maintained with isoflurane (IsoFlo; Zoetis) in 100% oxygen. Cefuroxime (22 mg/kg Zinacef; GlaxoSmithKline, Middlesex, UK) was administered intravenously preoperatively within 30 minutes of first incision and repeated at 90-minute intervals throughout the procedure.

All fractures were stabilised by ORIF. Medial, lateral or bilateral approaches to the distal humerus were performed as required by the fracture configuration (Johnson 2014). In unicondylar fractures, the fractured part of the condyle was stabilised with a transcondylar screw before bone plates were placed (Figs 1 and 2). Transcondylar screws were either placed as lag screws or as positional screws after manual interfragmentary compression was applied. Temporary or permanent supracondylar Kirschner

Table 1. Clinical outcome assessed by orthopaedic surgeon

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>No lameness and normal near normal range of motion</td>
</tr>
<tr>
<td>Good</td>
<td>Mild lameness and normal near normal range of motion</td>
</tr>
<tr>
<td>Fair</td>
<td>Moderate to severe lameness</td>
</tr>
<tr>
<td>Poor</td>
<td>Non-weight-bearing lameness</td>
</tr>
</tbody>
</table>

Table 2. Owner assessed long-term outcome

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>No lameness and normal exercise level</td>
</tr>
<tr>
<td>Good</td>
<td>Mild lameness and normal exercise level</td>
</tr>
<tr>
<td>Fair</td>
<td>Moderate to severe lameness and/or exercise intolerance</td>
</tr>
<tr>
<td>Poor</td>
<td>Non-weight-bearing lameness</td>
</tr>
<tr>
<td>Catastrophic</td>
<td>Amputation or euthanasia</td>
</tr>
</tbody>
</table>

E. Kvale et al.
wires were used at the surgeon’s discretion to maintain reduction during plate application. In bicondylar fractures, bilateral stabilisation was performed according to fracture configuration as previously described (Fig 3) (Garcí et al. 2020). Orthogonal radiographs were performed immediately postoperatively.

A modified Robert Jones bandage was applied and maintained for 24 to 48 hours. Postoperative antibiotics were administered at attending surgeons’ discretion. Follow-up examination was scheduled 4 to 6 weeks postoperatively, with orthogonal radiographs of the affected humerus obtained under sedation at the same visit. Once evidence of osseous healing was noted, a gradual return to normal exercise over the following 4 weeks was advised.

RESULTS

A total of 41 dogs with 45 fractures were identified. Mean age at the time of surgery was 4 months (range 3.5 to 5 months) and mean weight was 7 kg (range 4 to 10 kg). Fifteen dogs were male and 26 were female, and all dogs were sexually entire. Thirty-five (76.1%) lateral, three (6.5%) medial and seven (15.2%) bicondylar fractures were identified. Preoperative orthogonal radiographs of both humeri were available in all cases. Two dogs suffered bilateral simultaneous fractures, and six dogs had evidence of a contralateral HIF at the time of fracture (Fig 4).

Twenty-three fractures were operated by an ECVS or RCVS diplomat and 22 were operated by a resident under direct supervision of a diplomat. Locking compression plate(s) (LCP) (Synthes, Oberdorf, Switzerland) were used in 42 fractures and VetLOX (Freelance Surgical, Sommerset, UK) plates in three cases. The plate and screw sizes used were 2.0 mm (n=46), 2.4 mm (n=3) or 2.7 mm (n=3). The mean number of screws in the proximal segment was 2 (range 1 to 3) and the mean number of screws in the distal segment was 2 (range 1 to 4). All plates had a minimum of one locking screw engaging the distal humeral epiphysis and all constructs were either all locked (n=13) or hybrid (n=39).

Forty-four transcondylar screws were made of 316L stainless steel (43 cortical and one Synthes locking screw) and one was a VetLOX titanium locking screw. Seventeen were placed positional with the condyle compressed with point-to-point

FIG 1. Case 31, example of lateral humeral condylar fracture. (a, b) Preoperative radiographs showing lateral humeral condylar fracture. (c, d) Immediately postoperative radiographs showing fracture fixation with a transcondylar screw in combination with an epicondylar locking compression plate and a Kirschner wire. (e, f) Six weeks postoperative radiographs showing unchanged implants and osseous healing at the fracture sites
reduction forceps, 19 were placed in lag fashion and no information was available for nine fractures. A washer was used in 28 fractures. The diameters of the transcondylar screws were 2.0 mm (n=1), 2.4 mm (n=12), 2.7 mm (n=28) or 3.5 mm (n=4). The mean transcondylar screw diameter was 36% (range 25 to 47%) of the diameter of the isthmus of the humeral condyle.

Thirty-eight fractures were considered anatomically reconstructed. Three fractures had intracondylar gaps (range 1.7 to 2.6 mm), three had articular steps (range 0.6 to 0.8 mm), and one fracture had both an intracondylar gap (2.0 mm) and an articular step (0.5 mm). Of the cases with intracondylar steps and/or gaps, two fractures were lateral, two medial and three bicondylar. Two of these cases (both bicondylar) also had preoperative evidence of HIF.

Postoperative antibiotics were used in 11 of 43 surgeries for a median of 7 days (range 5 to 10). Cefalexin (20 mg/kg q12hr Therios; Ceva Animal Health, Amersham, UK) was used in 10 of 11 cases and amoxicillin–clavulanic acid (15 mg/kg q12hr Kesium; Ceva Animal Health, Amersham, UK) was used in one of 11 cases.

The short-term follow-up was available for all fractures at a mean of 5.6 weeks postoperatively (range 4 to 7 weeks). Clinical outcome was graded as excellent for 35 (77.8%) fractures, good for nine (20%) fractures and one dog had a poor short-term outcome. Forty-one of 45 fractures had reached radiographic union of both the humeral condyle and supracondylar crest at the short-term radiographic follow-up. Closure of the distal humeral physis was confirmed in all cases at that time and no evidence of condylar deformity was noted. The remaining four fractures all had major complications (Table 3); radiographic union was reached in these cases 6 to 14 weeks following revision surgery.

Postoperative complications occurred in six of 45 (13.3%) fractures (Table 3). Two fractures had minor complications, and four fractures had major complications requiring a total number of six revision surgeries. Case 32 (bilateral simultaneous lateral condylar fractures) suffered a fracture of the left medial supracondylar crest, caused by a surgical technical error (converging screws exiting the medial cortex close together creating a stress riser), on the day of the routine 6-weeks recheck. Stabilisation of the trochlea humeri to the humeral diaphysis with a 2.4-mm LCP was performed, recovery was uneventful and complete bone healing was confirmed 6 weeks later. The remaining three cases had loosening of the transcondylar screw. In case 36 (lateral condylar fracture),

![Image](https://example.com/image1.png)

FIG 2. Case 27, example of medial humeral condylar fracture. (a, b) Preoperative radiographs showing a medial humeral condylar fracture. (c, d) Immediately postoperative radiographs showing fracture fixation with a transcondylar screw in combination with a locking compression plate and an interfragmentary lag screw. (e, f) Six weeks postoperative radiographs showing unchanged implants and osseous healing at the fracture sites.
Condylar fractures in immature French bulldogs

FIG 3. Case 34, example of bicondylar (T-Y) fracture. (a, b) Preoperative radiographs showing bicondylar humeral condylar fracture. (c, d) Immediately postoperative radiographs showing fracture fixation with a transcondylar screw in combination with two locking compression plates and two lag screws. (e, f) Six weeks postoperative radiographs showing unchanged implants and osseous healing at the fracture sites. Note the mild malreduction (small articular step) on the immediate postoperative radiograph (c). Also note that this is not evident on the 6-week follow-up radiograph (e).

FIG 4. Case numbers 12 and 36 (a, b), examples of contralateral humeral intracondylar fissure at the time of surgery. Note the wide radiolucent line in the mid-sagittal plane of the humeral condyle in both cases.
<table>
<thead>
<tr>
<th>Case</th>
<th>Gender</th>
<th>Bodyweight (kg)</th>
<th>Fracture configuration</th>
<th>Transcondylar screw material/type/mode/size (mm)</th>
<th>Plate size (mm)/type</th>
<th>Radiographic evidence of contralateral HIF</th>
<th>Centralateral fracture</th>
<th>Complication (weeks postoperatively)</th>
<th>Treatment (number of surgical interventions)</th>
<th>Weeks to complete healing after revision surgery</th>
<th>Clinical short-term outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Female</td>
<td>6</td>
<td>Lateral</td>
<td>Steel/cortical/ lag/2.7</td>
<td>2.0/LCP</td>
<td>Yes</td>
<td>Yes (7 days postoperative)</td>
<td>Minor: Transcondylar screw backed out (6)</td>
<td>No treatment (bone healing already complete)</td>
<td>N/A</td>
<td>Excellent</td>
</tr>
<tr>
<td>30</td>
<td>Female</td>
<td>6</td>
<td>Lateral</td>
<td>Steel/cortical/ lag/2.7</td>
<td>2.0/LCP</td>
<td>No</td>
<td>No</td>
<td>Minor: Superficial surgical site infection (Staphylococcus pseudintermedius cultured) (2)</td>
<td>Antibiotic therapy</td>
<td>N/A</td>
<td>Good</td>
</tr>
<tr>
<td>32</td>
<td>Female</td>
<td>6</td>
<td>Lateral</td>
<td>Steel/cortical/ lag/2.4</td>
<td>2.0/LCP</td>
<td>Simultaneous bilateral fracture</td>
<td>Yes (simultaneous)</td>
<td>Major: Medial condylar fracture (6)</td>
<td>ORIF (1)</td>
<td>6</td>
<td>Poor</td>
</tr>
<tr>
<td>36</td>
<td>Female</td>
<td>6</td>
<td>Lateral</td>
<td>Steel/cortical/ lag/2.4</td>
<td>2.0/LCP</td>
<td>No</td>
<td>No</td>
<td>Major: Transcondylar screw backed out (no information available of culture) (6)</td>
<td>Replaced with larger transcondylar screw followed by screw removal and bone grafting (2)</td>
<td>14</td>
<td>Excellent</td>
</tr>
<tr>
<td>38</td>
<td>Female</td>
<td>7</td>
<td>Lateral</td>
<td>Steel/cortical/ positional/2.7</td>
<td>2.0/LCP</td>
<td>No</td>
<td>No</td>
<td>Major: Transcondylar screw backed out (no bacterial growth) (4)</td>
<td>Bilateral epicondylar plate fixation and bone grafting (1)</td>
<td>6</td>
<td>Good</td>
</tr>
<tr>
<td>41</td>
<td>Male</td>
<td>7</td>
<td>Lateral</td>
<td>Steel/ cortical/ not available/2.7</td>
<td>2.0/LCP</td>
<td>Yes</td>
<td>Yes (5 days postoperative)</td>
<td>Major: Transcondylar screw backed out (no bacterial growth) (4)</td>
<td>Replaced transcondylar screw followed by placement of transcondylar Webb bolt (2)</td>
<td>5</td>
<td>Good</td>
</tr>
</tbody>
</table>

HIF: Humeral intracondylar fissure. LCP: Locking Compression Plate. N/A: Not applicable. ORIF: Open reduction and internal fixation.
the 2.7-mm transcondylar screw backed out 2 weeks postoperatively, and it was replaced with a 3.5-mm cortical stainless steel screw. Evidence of screw loosening was again found 3 weeks later. This was managed conservatively, and healing of the supracondylar crest without further intervention was confirmed 8 weeks after revision surgery. At that time, the transcondylar screw was removed and the transcondylar tunnel packed with autologous bone graft due to further screw displacement and widening of transcondylar tunnel. Osseous union across the humeral condyle was confirmed 6 weeks later. In case 38 (lateral condylar fracture), the transcondylar screw was found to be loose immediately, and it was replaced with a 3.5-mm cortical stainless steel screw. Evidence of screw loosening was again found 3 weeks later. This was managed conservatively, and healing of the supracondylar crest without further intervention was confirmed 8 weeks after revision surgery. At that time, the transcondylar screw was removed and the transcondylar tunnel packed with autologous bone graft due to further screw displacement and widening of transcondylar tunnel. Osseous union across the humeral condyle was confirmed 6 weeks later. In case 41 (lateral condylar fracture), humeral condylar non-union and transcondylar screw loosening was found at the routine recheck 7 weeks postoperatively. Revision surgery was performed by placement of a 3.5-mm transcondylar screw. Screw loosening was again seen 7 days later, and another revision was performed with a 4.0-mm transcondylar Webb bolt in addition to a 2.7-mm transcondylar screw. Osseous union across the humeral condyle was confirmed at the last available follow-up 5 weeks later.

Owner-assessed long-term outcome was available for 29 of 45 fractures (26 dogs) by telephone conversation, a median of 18 months (range 12 to 73 months) postoperatively. All contacted owners reported excellent postoperative function with return to unrestricted activity and no observed lameness. Ten of these dogs (12 fractures) were subsequently presented for a long-term follow-up appointment, a median of 18 months (range 12 to 74 months) postoperatively. Mild periarticular thickening of the affected elbow was noted in all cases. All cases had elbow range of motion within −10° to +10° of the contralateral elbow on goniometric measurement, range 103° to 119° on affected legs and 110° to 127° on non-affected legs. On gait analysis (VAS), seven dogs scored 0/10 (no lameness) and three dogs scored 1/10 (subtle lameness). Objective data acquired on a PSW showed only mild maximal force asymmetry (<20%), with both increased and decreased Max force (%BW) noted on affected limbs in the eight cases with unilateral fractures. LOAD scores between 0 and 10 were recorded for all dogs. Results are presented in Table 4.

DISCUSSION

The outcome following locking and hybrid locking fixation of humeral condylar fractures in skeletally immature French bulldogs is comparable with previous studies, where excellent outcomes have been reported in 49.6 to 87% of cases (Morgan et al. 2008, Perry et al. 2015, Cinti et al. 2017, Sanchez Villamil et al. 2020). Recent studies have identified the French bulldog as predisposed to humeral condylar fractures, and the French bulldog has been reported to be more likely to have medial- or bicondylar fractures than Spaniel breeds (García et al. 2020, San-
chez Villamil et al. 2020, Smith et al. 2020). The distribution of fracture configuration in our study was different, revealing a higher incidence of lateral condylar fractures (76.1%) (Sanchez Villamil et al. 2020, Smith et al. 2020). Females were also more frequently affected than males, which has not previously been reported (Perry et al. 2015, Sanchez Villamil et al. 2020, Smith et al. 2020). Further investigations are needed to clarify if skeletally immature female French bulldogs are at a higher risk of condylar fracture.

HIF is characterised by a fissure in the mid-sagittal plane of the humeral condyle after the expected fusion of the medial and posterior ossification centres of the humeral condyle at 2 to 3 months of age (Hare 1961, Meurthege 1989, Marcellin-Little et al. 1994, Moores & Moores 2017). We found radiographic evidence of a contralateral HIF at the time of fracture in six of 41 (15%) of our dogs and two of these dogs subsequently developed contralateral condylar fractures within 7 days of the original surgery. A further two dogs presented with bilateral simultaneous fractures, raising high suspicion of underlying HIF. This number may be an underestimation of the true number of HIF as CT imaging, which is the preferred diagnostic tool for HIF, was not performed (Carrera et al. 2008). Several cases of bilateral humeral condylar fractures in French bulldogs, simultaneous or within 3 weeks of initial presentation, was also previously reported (Smith et al. 2020). We, therefore, suspect that delay or failure of union of the humeral condyle can play a role in this disease process in French bulldogs, as described for spaniels with IOHC (Marcellin-Little et al. 1994, Moores et al. 2012). Chondrodystrophic breeds have also been suspected to be at risk of humeral condylar fracture due to the geometry of their limbs, with eccentrically positioned capitulum and a relatively small lateral epicondylar crest (Butterworth & Innes 2001, Smith et al. 2020). This may contribute to the development of HIF/IOHC in this breed; further investigation is needed to confirm this hypothesis. All condyles appeared to reach clinical union in contrast to what is expected for cases with underlying HIF/IOHC pathology. It is unclear if this is due to the performed fixation, underestimation of persistent HIF due to the lack of CT imaging or if HIF/IOHC in bulldogs is different from the disease process described in Spaniel breeds.

A high number (3/7) of the cases with postoperative intracondylar steps and/or gaps were bicondylar fractures, and two of these cases also had a previously confirmed HIF at the time of contralateral fracture repair. It is unclear if the presence of an HIF or the increased technical challenge of reducing a bicondylar fracture contributed to the postoperative step and/or gap formation. Nevertheless, none of these cases developed postoperative complications, and good (n=3) or excellent (n=4) outcome was reported.

Recent publications favour epicondylar bone plates, rather than K-wire fixation, in combination with a transcondylar screw for medial and lateral humeral condylar fracture repair in dogs (Perry et al. 2015, Sanchez Villamil et al. 2020). Bilateral locking plate fixation combined with a transcondylar screw has been advocated to treat bicondylar fractures (Ness 2009, Moffatt et al. 2019, García et al. 2020). The populations of dogs in these reports are, however, very heterogeneous and limited information is provided about the impact of fixation method in skeletally immature dogs. Only one previous study has evaluated fixation of humeral condylar fractures in skeletally immature dogs (Cinti et al. 2017). In this study, stabilisation of the condyle was performed with a combination of transcondylar- and anti-rotational K-wires, and complications requiring surgical intervention were encountered in 23% of the cases. Our results compare favourably, where 91.1% of cases reached radiographic union without further surgical intervention and reduction of the condyle was not lost in any of the cases where complications were encountered. It remains unclear if the relatively low complication rate in our cases is the result of using a transcondylar screw, epicondylar plate or a combination of both, and a prospective randomised study is needed to establish the preferred stabilisation technique for these fractures. The advantages of using a locking plate system, such as increased screw pull-out strength (Large et al. 2008, Scrimgeour et al. 2017, Moffatt et al. 2019), may also have contributed to the absence of catastrophic mechanical failures in our cases.

The long-term follow-up after a median of 18 months postoperatively revealed excellent function, both assessed by the owners, surgeon and on objective analysis, which corresponds well with what previously reported following humeral condylar fracture management in the juvenile patient (Cinti et al. 2017). We can, however, only speculate on the degree of postoperative osteoarthritis as long-term radiographic follow-up was not performed, and longer follow-up time would be beneficial to better assess the long-term function.

Transcondylar screw loosening occurred in four cases, three of which required a revision surgery. This was despite all cases having plate fixation and was an unexpected complication. Potential causes include insufficient stability, infection, over/under tightening of the screw and thermal injury during placement. Whilst all cases occurred in lateral condylar fractures, there were no risk factors identified and the underlying cause remains unclear. None of the transcondylar screws fractured despite only being a mean of 36% of the diameter of the humeral condylar isthmus. This contrasts with previous recommendations for HIF treatment, where a large as possible transcondylar screw is recommended (Butterworth & Innes 2001).

Surgical site infection was only confirmed in one of our cases (2.2%). This compares favourably to infection rates previously reported following surgical stabilisation of humeral condylar fractures (6 to 14%) (Morgan et al. 2008, Perry et al. 2015, García et al. 2020). This is also lower than previously reported (5.2 to 7.1%) for clean orthopaedic procedures (Whittle et al. 1999, Türk et al. 2015). One can argue that surgical site infection could be present in the cases with loosening/backing out of the transcondylar screw; however, no macroscopic signs of infection were seen, no positive cultures were obtained and all cases reached clinical union following revision surgery.

The degree of relative limb shortening due to early symmetrical physical closure, or angular limb deformity due to asymmetric closure, is dependent on the amount of residual growth potential and this has been utilised with hemiepiphysiodesis and
transphyseal bridging to correct angular limb deformity in growing animals (Carlson et al. 2012, Olsen et al. 2016). Despite all cases having implants crossing the distal humeral physis, abnormal development of the humeral condyle was not noted at the short-term radiographic follow-up and no negative clinical consequences were found on long-term follow-up. Long-term radiographic follow-up was not performed in clinically sound animals due to ethical reasons, including the risk of peri-anaesthetic complications in brachycephalic dogs (Gruenheid et al. 2018), and is a limiting factor to this study.

The distal humeral physis reportedly contributes only to approximately 20% of humeral length and closes around 6 months of age (Hare 1961, Manley et al. 1990). This can explain the findings in a previous report, where no shortening of the humeral diaphysis or humeral deformity were found following penetration of the distal humeral physis by the transcondylar screw in skeletally immature patients with lateral condylar fractures (Lefebvre et al. 2008). The absence of obvious condylar deformity evident in our case series despite the relatively young age range (3 to 6 months) is also interesting and can be a result of the small contribution of humeral length by the distal physeal or that functional physeal closure occurs at an early age in this breed. Relative humeral length could not be assessed in our study as follow-up images of the contralateral limb were not available, and systematic evaluation of humeral mechanical axis was unfortunately not possible due to inconsistent radiographic projections on follow-up images. These results must therefore be interpreted with care and should not be extrapolated to fracture repair in other anatomic locations or other breeds where physeal closure may occur later.

This study is limited by retrospective nature, and the lack of standardisation of construct type, including plate size, screw numbers and mode, material and type of the transcondylar screw, are potential sources of error. Systematic radiographic evaluation of both affected and non-affected limbs for evaluation of humeral length and assessment of mechanical axis would also have provided valuable data for the assessment of potential postoperative deformity development. The lack of control groups, treated with a transcondylar screw and epicondylar K-wire fixation in open and/or minimal invasive fashion, also limits the conclusions that can be drawn from this study. Objective long-term follow-up was only attended by 24% of the operated cases and lack of long-term radiographic follow-up precluded systematic evaluation of humeral development; this was, however, beyond the scope of this study. CT imaging of contralateral limbs at the time of surgery could also potentially have revealed a higher number of humeral condylar fissures.

In conclusion, our hypothesis was confirmed and the results from this study suggest that fracture fixation involving implants crossing the distal humeral physis is a safe treatment option in skeletally immature French bulldogs and can lead to excellent short- and long-term outcomes.

Acknowledgements

The authors thank Michael Farrell, Jan Janovec, Igancio Calvo, Russel Yeaton, Christopher Jordan, James Guthrie, Susan Murphy, Padraig Egan, Jayson Tian and the staff at Fitzpatrick Referrals for their contribution to the treatment and care for the cases in this study.

Conflict of interest

None of the authors of this article has a financial or personal relationship with other people or organisations that could inappropriately influence or bias the content of the paper.

References

Hare, W. C. (1961) The ages at which the centers of ossification appear roentgenographically in the limb bones of the dog. American Journal of Veterinary Research 22, 825-835

Journal of Small Animal Practice • © 2022 British Small Animal Veterinary Association
of the humeral condyle in dogs. Veterinary and Comparative Orthopaedics and Traumatology 21, 400-405